Improved Linear Cryptanalysis of SMS4 Block Cipher

Joo Yeon Cho and Kaisa Nyberg

Nokia and Aalto University

SKEW 2010, Feb. 17, 2011

◆□> ◆□> ◆注> ◆注> ○注

1/25

<ロ> (四) (四) (三) (三) (三)

Conclusion

2/25

Outline

1. Multidimensional Linear Attack: Algorithm Aspect

2. Cryptanalysis of SMS4 Block Cipher: Approach and Results

(日)

Multidimensional Linear Attack Algorithm 1

Step 1 Choose a certain number (say, m) of linearly independent approximations.

 $U_i \cdot P \oplus V_i \cdot C = W_i \cdot K, \quad 0 \le i \le m - 1$

where U_i , V_i and W_i denote linear masks.

Step 2 Generate $2^m - 1$ linear approximations by combining *m* approximations. Their correlations are denoted as c_1, \dots, c_{2^m-1} . The capacity $\sum_i c_i^2$ is expected to be high.

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Multidimensional Linear Attack Algorithm 1

Step 3 Suppose $G = (g_0, \ldots, g_{m-1})$ where $g_i = W_i \cdot K$. For each value of *G*, create its probability distribution

$$p_G = (p_{0,G}, \ldots, p_{2^m-1,G})$$

where

$$p_{i,G} = 2^{-m} \sum_{j=0}^{2^m - 1} (-1)^{j \cdot (i \oplus G)} c_j$$

Step 4 Measure the frequency of the vectors (g_0, \ldots, g_{m-1}) where $g_i = U_i \cdot P \oplus V_i \cdot C$. Obtain the empirical probability distribution $q_K = (q_{0,K}, \ldots, q_{2^m-1,K})$. *K* is unknown.

Multidimensional Linear Attack Algorithm 1

Step 6 Compute the log-likelihood ratio (*LLR*) between p_G and q_K

$$LLR(p_G, q_K) = \sum_{i=0}^{2^m - 1} q_{i,K} \log p_{i,G} + m.$$

where $u = (u_0, \ldots, u_{2^m-1})$ is the uniform distribution.

Step 7 Choose the G such that $\max_G LLR(p_G, q_K)$ as the right key.

Multidimensional Linear Attack Algorithm 2

- 1. Suppose *l* is the length of the guessed key. Measure $q_{\kappa} = (q_{\kappa,0}, \dots, q_{\kappa,2^m-1})$ for $\kappa \in [0, 2^l 1]$.
- 2. Choose κ and G such that $\max_{\kappa} \max_{G} LLR(p_G, q_{\kappa})$ as the right key values.
- 3. Recover (l + m) bits information of the secret key.

Convolution Method: Reducing Time Complexity

- It was proposed at CT-RSA 2010 by Hermelin and Nyberg.
- Instead of using *LLR*-statistics, the statistical decision can be equivalently made by computing

$$D_G = \sum_{i=0}^{2^m-1} (-1)^{i \oplus G} \hat{c}_i \times c_i$$

where $\hat{c}_0, \ldots, \hat{c}_{2^m-1}$ are the empirically measured correlations of $2^m - 1$ linear approximations.

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Convolution Method: Reducing Time Complexity

- The *LLR*-statistic requires around $2^m \cdot 2^m$ on-line computation efforts.
- Convolution method requires $m \times 2^m$ operations by FFT algorithm. The correct key is recovered by choosing G such that D_G is maximal.
- We can further reduce the complexity by choosing only $M(<2^m-1)$ significant correlations.

◆□> ◆□> ◆注> ◆注> ○注

9/25

SMS4 is

- a Chinese block cipher designed for Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure).
- a generalized Feistel block cipher taking 128-bit input, 128-bit output and 128-bit key.
- is composed of 32 rounds.

Detailed specification is available at IACR ePrint Archive.

Round Function of SMS4

 $X_{i+4} = X_i \oplus L(\tau(X_{i+1} \oplus X_{i+2} \oplus X_{i+3} \oplus RK_i)), \quad X_i, RK_i \in \mathbb{F}_2^{32}$

◆□ ト ◆ □ ト ◆ ■ ト ◆ ■ ト ◆ ■ や Q ペ 10/25

Round Function

1. Let *S* denote the 8×8 S-box of SMS4. The non-linear transformation τ is defined as

$$\tau(A) = S(a_0)||S(a_1)||S(a_2)||S(a_3)$$

where || stands for the concatenation.

2. The linear transformation L is defined as

 $L(X) = X \oplus (X \lll 2) \oplus (X \lll 10) \oplus (X \lll 18) \oplus (X \lll 24)$

where $X \ll n$ denotes the left-rotated X by *n*-bit.

5-Round Characteristic

- 1. Let $\gamma \in \mathbb{F}_2^{32}$ be a linear mask.
- 2. Get two rounds linear approximations

$$\gamma \cdot X_{i+4} = \gamma \cdot (X_i \oplus X_{i+1} \oplus X_{i+2} \oplus X_{i+3} \oplus RK_i)$$

and

$$\gamma \cdot X_{i+5} = \gamma \cdot (X_{i+1} \oplus X_{i+2} \oplus X_{i+3} \oplus X_{i+4} \oplus RK_{i+1}).$$

3. By adding two approximations, we get

$$\gamma \cdot (X_i \oplus X_{i+5}) = \gamma \cdot (RK_{i+1} \oplus RK_i)$$

with the correlation of $\rho^2(\gamma, \gamma)$.

< □ > < @ > < E > < E > E の

18-Round Characteristic

1. Add three consecutive 5-round characteristics:

 $\gamma \cdot X_5 \oplus \gamma \cdot X_{20} = \gamma \cdot (RK_5 \oplus RK_6 \oplus RK_{10} \oplus RK_{11} \oplus RK_{15} \oplus RK_{16})$

with the correlation of $\rho^6(\gamma, \gamma)$.

2. This is a 18-round characteristic from Round 3 to Round 20

 $(X_2, X_3, X_4, X_5) \rightarrow (X_{20}, X_{21}, X_{22}, X_{23})$

14/25

Best Linear Approximations

There are 24 linear approximations holding with the highest correlations of $2^{-9.19}$.

set	γ	γ $L_2(\gamma)$ set γ		$L_2(\gamma)$	
	0x0011ffba	0x0084be2f		0xba0011ff	0x2f0084be
\mathcal{A}_0	0x007905e1	0x005afbc6		0xe1007905	0xc6005afb
	0x00edca7c	0x0083ffaa	\mathcal{A}_1	0x7c00edca	0xaa0083ff
	0x007852b3	0x00582b15		0xb3007852	0x1500582b
	0x00a1b433	0x00f1027a		0x3300a1b4	0x7a00f102
	0x00fa7099	0x00d20b1d		0x9900fa70	0x1d00d20b
	0xffba0011	0xbe2f0084		0x11ffba00	0x84be2f00
	0x05e10079	0xfbc6005a		0x7905e100	0x5afbc600
\mathcal{A}_2	0xca7c00ed	0xffaa0083	\mathcal{A}_3	0xedca7c00	0x83ffaa00
	0x52b30078	0x2b150058		0x7852b300	0x582b1500
	0xb43300a1	0x027a00f1		0xa1b43300	0xf1027a00
	0x709900fa	0x0b1d00d2		0xfa709900	0xd20b1d00

<ロ> (四) (四) (三) (三) (三)

15/25

Mapping L_2

• The mapping L_2 is defined to satisfy the following equation:

$$\gamma \cdot L(x) = L_2(\gamma) \cdot x$$

for $x \in GF(2^{32})$.

• Linear approximation of the round function is

$$\begin{aligned} \gamma \cdot (X_{i+4} \oplus X_i) &= \gamma \cdot L(\tau(X_{i+1} \oplus X_{i+2} \oplus X_{i+3} \oplus RK_i)) \\ &= L_2(\gamma) \cdot \tau(X_{i+1} \oplus X_{i+2} \oplus X_{i+3} \oplus RK_i) \\ &\approx \gamma \cdot (X_{i+1} \oplus X_{i+2} \oplus X_{i+3} \oplus RK_i) \end{aligned}$$

Our Observations

• Let \mathcal{A}_0 be a set of linear masks which is defined as

$$\mathcal{A}_0 = \{a | 0 \le a < 2^{24}, 0 \le L_2(a) < 2^{24}\}.$$

- There are 52744 non-zero linear approximations in A_0 .
- All the non-zero approximations can be generated by using 16 independent approximations.
- The capacity of those probability distribution is around $2^{-29.3}$. Note that the square of correlation of the strongest approximation is $2^{-36.76}$.

Experiments on 5-Round Characteristic

The data complexity for MA1 is calculated as

$$N_{MA1} = \frac{(\Phi^{-1}(P_S) + \Phi^{-1}(1 - 2^{-a}))^2}{Capacity}$$

E▶ < E▶ E のQ@ 17/25

20-Round Linear Characteristic

• Re-use 18-round characteristic from Round 5 to Round 22:

 $(X_4, X_5, X_6, X_7) \rightarrow (X_{22}, X_{23}, X_{24}, X_{25})$

• Add 2-round linear characteristic from Round 3 to Round 4 with linear masks α, β .

$$\begin{aligned} \alpha \cdot X_2 \oplus \beta \cdot (X_3 \oplus X_4 \oplus X_5 \oplus RK_2) &= \alpha \cdot X_6 \\ \gamma \cdot X_3 \oplus \alpha \cdot (X_4 \oplus X_5 \oplus X_6 \oplus RK_3) &= \gamma \cdot X_7 \end{aligned}$$

and the correlation is $\rho(\beta, \alpha)\rho(\alpha, \gamma)$.

• By combining two approximations, we get

 $\alpha \cdot X_2 \oplus (\beta \oplus \gamma) \cdot X_3 \oplus (\alpha \oplus \beta) \cdot (X_4 \oplus X_5) \oplus \gamma \cdot X_{22}$ = $\beta \cdot RK_2 \oplus \alpha \cdot RK_3 \oplus \gamma \cdot (RK_7 \oplus RK_8 \oplus RK_{12} \oplus RK_{13} \oplus RK_{17} \oplus RK_{18})$

with the correlation of $\rho(\beta, \alpha)\rho(\alpha, \gamma)\rho^{6}(\gamma, \gamma)$.

MD Attack

SMS4

Conclusion

Evaluation of $\rho(\gamma, \gamma)$

Suppose $\gamma \in \mathcal{A}_0$ and $0 \leq \alpha < 2^{24}$.

$ \rho(\gamma, \gamma) $	Number of approx.	$ \rho(\alpha,\gamma) $	Number of approx.
$2^{-9.19}$	6	$2^{-9.0}$	125
$2^{-9.39}$	11	$2^{-9.10}$	0
$2^{-9.42}$	15	2-9.20	1200
$2^{-9.58}$	12	$2^{-9.30}$	0
2-9.61	76	$2^{-9.40}$	6540
$2^{-9.68}$	7	$2^{-9.50}$	0
$2^{-9.80}$	120	$2^{-9.60}$	21376
2-9.83	89	$2^{-9.70}$	1800
$2^{-9.87}$	56	2-9.80	47088

◆□▶ < @▶ < ≧▶ < ≧▶ < ≧▶ 19/25

<ロ> (四) (四) (三) (三) (三)

20/25

Target key

- Since the most significant 8 bits of γ are zero and $0 \le L_2(\gamma) < 2^{24}$, it is sufficient to guess the lower 24 bits for RK_{22} .
- Since $0 \le \alpha < 2^{24}$ and $0 \le L_2(\alpha) < 2^{32}$, we need to guess 32 bits of RK_0 and RK_1 .
- Hence, the target key length is $32 \cdot 2 + 24 = 88$ bits.

Probability Distribution and Capacity

• Let us define \mathcal{M} as

$$\mathcal{M} = \{ (\alpha, \beta) \mid (\rho(\beta, \alpha)\rho(\alpha, \gamma))^2 > \delta \}.$$

where δ denote a threshold value.

• The capacity of the probability distribution is calculated as

$$C_p = \sum_{\gamma \in \mathcal{A}_0} C_{\mathcal{M}}(\gamma)$$

where

$$C_{\mathcal{M}}(\gamma) = \sum_{(\alpha,\beta)\in\mathcal{M}} \rho^2(\beta,\alpha)\rho^2(\alpha,\gamma)\rho^{12}(\gamma,\gamma).$$

Evaluation of the number of linear approximations and capacity

- We chose m = 34 and $M = 2^{24.7}$.
- Then, the capacity of the 20-round characteristic is $C_p = 2^{-119.7}$.
- The data complexity required for the full advantage (a = 88) of the attack is around $N_{MA2} = (88 + 34)/2^{-119.7} = 2^{126.6}$ with Ps = 0.95.

δ	М	C_p
$2^{-36.0}$	$125 = 2^{7.0}$	$2^{-135.6}$
$2^{-36.4}$	$2075 = 2^{11.0}$	$2^{-131.9}$
$2^{-36.8}$	$14615 = 2^{13.8}$	$2^{-129.5}$
2-37.2	$62476 = 2^{15.9}$	$2^{-127.7}$
$2^{-37.6}$	$211462 = 2^{17.7}$	$2^{-126.2}$
$2^{-38.0}$	$1696134 = 2^{20.7}$	$2^{-123.0}$
$2^{-38.4}$	$4249383 = 2^{22.0}$	$2^{-122.0}$
$2^{-38.8}$	$10655129 = 2^{23.4}$	$2^{-121.3}$
$2^{-39.2}$	$31530029 = 2^{24.7}$	$2^{-119.7}$
$2^{-39.6}$	$75192630 = 2^{26.2}$	$2^{-119.0}$

Comparison of data and time complexity of the attacks against reduced-round SMS4

round	data	time	memory	method
22	$2^{118.4}$	2^{117}	2^{112}	Linear
22	2^{117}	$2^{112.3}$	2^{110}	Differential
23	$2^{126.6}$	$2^{127.4}$	$2^{120.7}$	MultiDim. Linear (this paper)

<ロ> (四) (四) (三) (三) (三)

Conclusion and Future Work

- 1. We showed how the multidimensional linear cryptanalysis could improve the previous linear attack on the reduced version of SMS4.
- 2. We also demonstrated that the convolution method could reduce the time complexity of multidimensional linear attack.
- 3. m = 34 is still not optimal. It might be reduced.

25/25

Thank you for your attention